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Abstract

During the missile flight, the jet flow with high temperature comes from the heat flux of propellant burning. An enormous heat flux
from the nozzle throat-insert inner contour conducted into the nozzle shell will degrade the material strength of nozzle shell and reduce
the nozzle thrust efficiency. In this paper, an on-line inverse method based on the input estimation method combined with the finite-ele-
ment scheme is proposed to inversely estimate the unknown heat flux on the nozzle throat-insert inner contour and the inner wall tem-
perature by applying the temperature measurements of the nozzle throat-insert. The finite-element scheme can easily define the
irregularly shaped boundary. The superior capability of the proposed method is demonstrated in two major time-varying estimation
cases. The computational results show that the proposed method has good estimation performance and highly facilitates the practical
implementation. An effective analytical method can be offered to increase the operation reliability and thermal-resistance layer design

in the solid rocket motor.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The nozzle plays an important role in the solid rocket
motor (SRM). The high temperature jet energy from the
combustor produced by expansion and acceleration is
transferred into the motor thrust and makes the missile
flight possible. During the motor operation process, the
nozzle must endure the impact of jet flow with high temper-
ature and pressure. Under this situation, the nozzle design
will obviously affect the motor performance. The high tem-
perature from the inner contour of the nozzle conducted
into its shell will increase the erosion of nozzle throat-
insert, enlarge the throat radius which makes thrust des-
cend, decrease the material strength of the nozzle shell,
and reduce the nozzle thrust efficiency [1,2]. It will influence
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the performance of the missile. In order to meet the
requirements in resisting the nozzle shell temperature and
the jet flow, the throat-insert materials need to be inserted
in the nozzle inner counter to form protection. There are
three major materials required, which are the throat-insert,
thermal liner and insulator materials. The nozzle throat
endures serious impact from high temperature and the
strongest heat flux in the throat-insert, so that the throat-
insert materials will directly affect the nozzle efficiency
and reliability [3]. Therefore, the heat conduction problem
design in the nozzle and the method to choose moderate
throat-insert materials is very important, since we are well
informed of the fact that the high temperature can be pro-
duced by heat flux.

The unknown heat source or heat flux estimation utiliz-
ing a measured temperature inside a heat-conducting solid
is called the inverse heat conduction problem (IHCP). It is
necessary to calculate the transient surface heat flux and


mailto:c2271003@ms61.hinet.net

3572 T.-C. Chen, C.-C. Liul International Journal of Heat and Mass Transfer 51 (2008) 3571-3581

Nomenclature

B sensitivity matrix
[C] capacitance matrix
C, specific heat

[D] matrix of the conductivity values
E elements number

{m coefficient matrix

{F} thermal load vector

[G] coefficient matrix

H measurement matrix

h convection heat transfer coefficient
k time (discretized)

K Kalman gain

K, steady-state correction gain

K,,, K, thermal conductivity

L length of z direction

M sensitivity matrix

[M] global conductance matrix

N total number of spatial nodes

[N] shape function matrix

P filter’s error covariance matrix

q(1) continuous-time unknown heat flux input
q(k) discrete-time unknown heat flux input
P, error covariance matrix

0 process noise variance

r axial direction

R measurement noise variance

R; inner radial

R, outer radial

s(k) innovation covariance

t time

temperature

temperature vector
sampling time interval
measurement noise vector
state vector

axial direction
observation vector
thermal diffusivity
forgetting factor

input matrix

Dirac delta function
density

coefficient matrix

state transition matrix
coefficient matrix
coefficient matrix
coefficient matrix
standard deviation of the measurement noise
process noise vector

—
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Subscripts
1,2 sensor measurement location
S body surface
Superscripts
- estimated by filter
~ estimated
transpose of matrix
e element

temperature distribution from the temperature measure-
ments at some location inside or outside the body. For
example, when evaluating new heat-shield materials, static
firing test of rocket nozzles, and developing transient calo-
rimeters, it is necessary to calculate the transient surface
heat flux and temperature distribution from the tempera-
ture history measured at some location inside or outside
the body. In the indirect approach, the thermocouples are
embedded inside the body rather than on the surface where
the boundary temperature is extremely high. By applying
these temperature measurements to the inverse heat con-
duction methods, the unknown surface heat flux can be
estimated. There are various theories about the ITHCP,
and the development of the solutions has already been in
progress constantly. Those solutions can be assorted into
two, major categories in terms of the data processing.
One is the off-line estimation [4-8], and the other is the
on-line estimation [9-14]. The off-line estimation processes
the data in the batch form. The problem with the batch
form is the computational inefficiency. To resolve the inef-
ficiency issue of the batch form approach, Tuan et al. [9] in
1996 successfully developed an input estimation algorithm,

which can on-line estimate an unknown input, such as the
heat flux, heat sources, etc., as shown in the articles pre-
sented by Tuan et al. [9,10] and Ji et al. [11,12].

In this paper, the on-line estimation, which combines
the input estimation method with the finite-element
scheme, is adopted to solve the unknown heat flux problem
and the 2D hollow cylinder nozzle IHCP. The discrete
finite-element concept has been applied to the inverse heat
conduction problems [15-19]. The irregularly shaped
boundaries can be approximated using the elements with
straight sides or matched using the elements with curved
boundaries. The input estimation method uses the Kalman
filter to generate the residual innovation sequence. A recur-
sive least square algorithm is derived to compute the value
of the heat flux by using this residual sequence [20]. The
proposed method for the 2D hollow cylinder nozzle IHCP
is also used to study the modeling and measurement error
effects. The triangle waveform and Generalized bell curve
function are utilized in the heat flux simulation cases.
The results demonstrate good performance and precision
in tracking the unknown boundary heat flux of a thermal
system.
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2. Problem formulation

We assume axis-symmetric transient heat conduction in
hollow cylinder, where r, 0, z, are the radial, circumferen-
tial, and axial axes, respectively [21]. The nozzle insert-
throat material is a non-homogeneous irregular shape heat
conduction body. The governing equation is simplified in
two-dimensional, R; <r < R,, 0 <z < L. The initial tem-
perature is 7(r,z,0) = 0. For time 7 > 0 the boundaries at
z=0, z= L and outer surface r = R, are kept insulated.
The simulated measured temperature Z(R,,t) is located
in the nozzle insert-throat material outer wall m(r,z).To
demonstrate the finite-element method application to tem-
perature distribution determination with a conducting
body, Fig. 1 shows the geometry and discrete models.

The following restrictions apply here:

(1) The temperature distribution is axis-symmetrical.

(2) The densities, specific heats, and thermal conductivi-
ties of the inner wall of nozzle are all constants.

(3) Phase change in the material is not considered to have
an effect on the heat transfer process.

(4) The outer wall of nozzle insert-throat material is insu-
lated boundary.

The mathematical formulation of the two-dimensional,
transient, heat conduction problem can be generalized as
O’T K, L OT c T
"o o hEez TPy
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where T is the uniform initial temperature, ¢(z, ¢) is the un-
known heat flux inputs to be estimated. 7 is the tempera-
ture and ¢ represent the time. There is a non-uniform
distribution at the z axial and Z,,,(¢) are the noise-corrupted
temperature measurements. v(¢) is the measurement noise
assumed with zero mean and white Gaussian noise.

The calculus of variations provides an alternative
method for formulating the governing Eq. (1) and bound-
ary conditions Eqs. (3)—(6). Variational calculus states that
the minimization of the functional J [22]
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Fig. 1. Geometry and discrete models.
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When the minimization process is complete, the following
system of equations results [23].

A% ayry 4 ry =0 (1)

Eq. (11) is the first-order linear differential equation of
the system. The [C] matrix is the global capacitance matrix,
[M] is the global conductance matrix, {F} is the thermal
load vector. The element contributions to [C], [M], {F}
are summed in the usual manner

€1=30(c1=> [ roc, W WIav (12)
)= 3w =3 / 1B]"(D][B]dV (13)
(F} = Z{f"} - Z /

where [N] is the shape function matrix, [B] is obtained by
differentiating [N] with respect to rand z, [D] matrix con-
sists of the conductivity values. [ff] and [G] are the coeffi-
cient matrix. ¢ is the unknown heat flux input at the
inner wall r = R;. All of the integrals in Egs. (12)—(14) were
evaluated over a single element. The element contributions
are summed in the usual manner. Therefore, from Eq. (11)
and to account for process noise inputs [24], the continu-
ous-time state equation can be written as

T(t) = lPT()+Q[ (1) + (1)]
= (=1)[C] 'M] (15)
= (=) "[ff]

where the state vector 7(¢) is N x 1. N is the total number
of nodes. Yand Q are both the coefficient matrices. w(?) is
the continuous-time processing error vector, which is as-
sumed as the Gaussian white noise. The error exists in
the formulation of the filter mathematical model due to
the lack of understanding in the physical systems. ¢(¢) is
the continuous-time unknown heat flux input.

Assume the state variable X represents the temperature,
q(k — 1) is the discrete-time unknown heat flux input

I'ds = [ff1{q} (14)

Tyn_y TN]T
ok —1)]

In general, we must compute the state transition matrix, @
and input matrix, I" using numerical integration and these
matrices change from one time interval to the next. The
solution to state Eq. (15) can be expressed as

X=[T, T, Ts

(16)
X(k) =X (k— 1)+ Ik — 1) +

X(t) = O(t, 1) X (t0) + /t &(2,7)[Q(1)g(7) + Q(t)w(r)]dr

fo

where state transition matrix @(¢z,7) is the solution to the
following matrix homogeneous differential equation:

d(t,7) = P(1)D(t,7) (17)

Next, we assume that ¢(¢) is a piecewise constant function
of time for 7 € [t;_1, t;] and set to = #;,_; and ¢ = #; in Eq.
(17), to obtain

@ ="M~ ]+ PAr

i A2
I = / "D Qdr ~ QAL + ‘PQT ~ QAt
tk—1

X represent the state vector, @ is the state transition matrix,
I' is the input matrix, ¢ is the deterministic input sequence
and w(k — 1) is a discrete-time white Gaussian sequence
that is statistically equivalent through its first two moments
to

olk—1) = / b, 0o do

k-1

The mean and covariance matrix of w(k — 1) are
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Fig. 3. Inverse estimation for ¢(#) for Example 1 with Q =10,
N»5(0.11,0.08) ((a) o = 0.001 and (b) o = 0.0001).
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Fig. 4. Inverse estimation for ¢(¢f) for Example 1 with Q= 100,
N»»(0.11,0.08), ((a) ¢ = 0.001 and (b) ¢ = 0.0001).
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E{w(k)o"(j)} = Q0 = Q- L - 0y

where I, is the identity matrix. J; is a Dirac delta func-
tion. Q is the covariance of processing error. Because our
measurements have been assumed to be available only at
sampled values of tatt=¢;,i=1,2, ..., In order to com-
pare the results for situations involving measurement er-
rors, we can express Eq. (7) as

Z(k) = HXexact(k) + U(k) (18)

Egs. (16) and (18) constitute our discretized state-variable
model. Where Xy, 1s the solution for the direct problem
with a known ¢(k), Z is the observation vector at time
kA, H is the measurement matrix, v is the measurement
noise vector, assumed to have zero mean and white noise.
The variance of v(k) is given by

E{v(k)o"(j)} = Roy = azékj

where ¢ is the standard deviation of the measurement
noise.

3. The adaptive weighting input estimation algorithm

The recursive input estimation algorithm consists of two
parts. The first part is a Kalman filter. The second part is a
real-time least squares algorithm. The input parameter is
the unknown time-varying heat flux. The Kalman filter
requires an exact knowledge of the process noise variance
Q and the measurement noise variance R, R depends on
the sensor measurements. The Kalman filter is used to gen-
erate the residual innovation sequence. This recursive real-
time least-squares algorithm is derived by residual sequence
to compute the value of the input heat flux. The actual val-
ues derived in the paper [20].
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Fig. 5. Inverse estimation for ¢(#) for Example 1 with Q= 10,
N45(0.082,0.018), ((a) 0 =0.001 and (b) ¢ = 0.0001).
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The Kalman filter equations are given by

X(k/k—1)=@X(k—1/k—1) (19)
P(k/k—1) = ®P(k — 1/k — 1)®" + ror" (20)
s(k) = HP(k/k — 1)HT + R (21)
K(k) = P(k/k — 1)H"s™" (k) (22)
P(k/k) = [I — K(k)H|P(k/k — 1) (23)
Z(k)y=2Z(k) —HX(k/k — 1) (24)
X(k/k) = X (k/k — 1) + K(k)Z(k) (25)
The equations for a recursive least-squares algorithm are
B(k) = H[®M (k — 1) + 1] (26)
M(k)=[I — K(k)H][®@M (k — 1) + 1] (27)
Ky (k) = 7' Py(k = 1)B" (k)

X [B(k)y~'Py(k — 1B (k) +s(k)] " (28)
Py(k) = [I — Ky(k)B(K)]y~'Py(k — 1) (29)
q(k) = 4(k — 1) + Ky (k) [Z(k) — B(k)q(k — 1)] (30)

where g(k) is the estimated input vector, Py(k) is the error
covariance of the estimated input vector, B(k) and M(k)
are the sensitivity matrices, and K, is the Kalman gain.
Z(k) is the bias innovation caused by measurement noise
and input disturbance. s(k) is the covariance of the resid-
ual. Here vy is an adaptive weighting function that may be
presented as in [25]. That is

1 Zk)| <o
MF{;_H)
|Z(k)]

|Z(k)| > o
using (k) to replace the y in Eqgs. (28) and (29). When we
let y = 1, the above algorithm reduces to the usual sequen-
tial least-squares, which is suitable only for a constant—
parameter system. The correction gain K,(k) for updating
g(k), in Eq. (30), is diminishing as k increases, which allows
g(k) to convergence to the true constant value. In the time-
varying case, however, we like to prevent K(k) from reduc-
ing to zero. This is accomplished by introducing the factor
y. For 0 <y < 1, K,(k) is effectively prevented from shrink-
ing to zero. Hence, the corresponding algorithm can pre-
serve its updating ability continuously. However, the
inherent data truncation effect brought about y causes var-
iance increases g(k) in the estimation problem resulting
from noise. Thus, it is necessary to compromise between
fast adaptive capability and the estimate accuracy loss. A
flow chart for the application of the recursive input estima-
tion algorithm to the computation of (k) is given in Fig. 2.

(31)

4. Results and discussion

To illustrate the accuracy of the proposed approach in
predicting input heat flux g(k), the example is used to check
the feasibility of the input estimation method including the
finite-element scheme. The following physical quantities
were used in the calculation:

Thermal properties of throat-insert material
(polycrystalline graphite)
Specific heat C,=1,046 J/(kg °C)
Density p =1, 750 kg/m?
Thermal conductivity of axis  K.. =120.9176 J/(m s °C)

Thermal conductivity of radial K, = 69.036 J/(m s °C)

The total time is 75 the sampling interval Az = 0.005s
and the unknown heat flux ¢(z,7) is uniform applied to
the inner counter surface. Thermocouples were placed in
different nodes, respectively, elements number E =115,
total number of spatial nodes N = 74, the initial tempera-
ture Tp = 0. y(k) is an adaptive weighting forget factor.

Where the error covariance of the estimated state is P,
the error covariance of the estimated input vector is P,.
Because P(—1/—1) and P,(—1) are normally unknown,
the estimator was initialized with P(—1/—1) and Py(—1)
as very large numbers, such as 10'° and 10'°, respectively.
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Fig. 6. Inverse estimation for ¢(¢) for Example 1 with Q =100,
N45(0.082,0.018), ((a) 6 =0.001 and (b) ¢ = 0.0001).
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This had the effect of treating the initial errors as very
large. The estimator will therefore ignore the first few ini-
tial estimates [26]. The initial conditions for the input esti-
mator were given by X(—1/—-1)=[0 0 0]" and
P(—1/—1) = diag[10'°] for the Kalman filter. The recur-
sive least-squares algorithm initial conditions were given
by g(=1)=[0 0 0 0]", Py(—1)=10"-1,,, and
M(—1) was set using a zero matrix. The Kalman filter for
the recursive input estimation algorithm requires exact
knowledge of the process noise variance matrix Q and
the measurement noise variance matrix R. R dependent
on the sensor measurements. Both the value of Q in the fil-
ter and the value of y(k) in the sequential least-squares
approach interactively affect the fast adaptive capability
for tracking the time-varying parameter. The test input
heat flux is given by

—exactq
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w
u
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Time (sec)

exact q
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Fig. 7. Inverse estimation for ¢(z) for Example 2 with Q= 10,

N»x(0.11,0.08), ((a) o = 0.001 and (b) ¢ = 0.0001).

Example 1. Triangle waveform in ¢(7) (W/m?). The input
heat flux ¢(¢) is assumed in the form

0 0<r<4,20<t <t
g(t) = { 5x10° x (0.5t — 2) 4<r<12 (W/m?)
5x10° x (—0.5¢+10) 12<¢<20
(32)

First, we consider the estimation input heat flux ¢(7) is
triangle waveform on the inner counter surface, the outer
wall surface are kept insulated, the sensors location are at
N»(0.11,0.08) and Ny45(0.082,0.018), elements number
E =115, the initial temperature T = 0, the sampling time
interval Az =0.005 s, forgetting factor y(k), process noise
covariance Q = 10, 100, and measurement noise covariance
g =0.001, ¢ =0.0001. The estimates of ¢(¢) are shown in
Figs. 3-6. In this case, we use a triangle waveform heat flux
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Fig. 8. Inverse estimation for ¢(¢) for Example 2 with Q= 100,
N»»(0.11,0.08), ((a) ¢ = 0.001 and (b)o = 0.0001).
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to test this method. From Figs. 3-6, we find this method
can estimate the unknown heat flux accuracy, and although
the measurement error influences the estimate resolution,
the results are still good.

Example 2. Generalized bell curve function waveform ¢()
(W/m?) at the inner wall boundary. The input heat flux ¢(7)
is assumed in the form

0 0
5x10° x —! 1

a=21.6,b=11.5,c =30

q(t) =

(33)

Here we consider the estimation input heat flux ¢(¢) is gen-
eralized bell curve function waveform on the boundary. It
is in a manner like the missile flight with the high temper-
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Fig. 9. Inverse estimation for ¢(#) for Example 1 with Q= 10,

N,5(0.082,0.018), ((2) ¢ = 0.001 and (b) ¢ = 0.0001).

ature jet flow which impact into the nozzle throat-insert in-
ner contour during flight time. The following has
assumption as mentioned above. The sensors location are
at N»(0.11,0.08) and N4s5(0.082,0.018), elements number
E =115, the initial temperature T, = 0, the sampling time
interval Az =0.005 s, forgetting factor y(k), process noise
covariance Q = 10, 100, and measurement noise covariance
0 =0.001, 0 =0.0001. The estimates of ¢(¢) are shown in
Figs. 7-10. Fig. 11 demonstrates the inner wall temperature
figure.

From Figs. 7-11, just as the measurement variance R
increases, the Kalman gain K(k) Eq. (22) decreases. The
correction Eq. (25) is proportional to the difference
between that measurement and its best predicted value
and when the ¢ increases, from Eq. (25) the Kalman gain
K(k) decrease causes the estimate more believe predicted
value than new measurement. We can find that if the
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Fig. 10. Inverse estimation for ¢(f) for Example 2 with Q =100,
N45(0.082,0.018), ((a) 0 =0.001 and (b) ¢ = 0.0001).
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Fig. 11. Inner wall temperature.

modeling error (Q) from Egs. (20)—(22) increases, it will
make K(k) increase, it leads to estimation quickly in Figs.
8 and 10. Figs. 7a, 8a, 9a and 10a show that a larger mea-
surement error (o) can cause estimation lag and estimate
accuracy degradation, the results are still good. In Figs. 9
and 10, the sensor (N45(0.082,0.018)) approach the heat
flux the lag effect smaller and the estimate result is better.
The estimation results from the proposed method show
excellent agreement with the exact value.

The above simulation results demonstrate that the pro-
posed method has good performance in tracking unknown
heat flux cases and the algorithm is capable of dealing with
on-line 2D nozzle throat-insert inner contour irregular
shape THCP.

5. Conclusions

This research offered an effective analytical method for
thermal-protection layer design in the solid rocket motor.
We used simulations of the measured temperature on the
nozzle throat-insert outer surface to estimate the heat flux
in the inner wall on-line with accuracy. An on-line method-
ology, based on the input estimation method including the
finite-element scheme, was developed for estimating
unknown input heat flux on the boundary. A tradeoff
between the process noise variance and sensitivity to mea-
surement errors in inverse methods has been presented. We
choose a larger model error (Q = 100) and precision mea-
surement (0 = 10"%) to acquire better estimated results.
The polycrystalline graphite has been used for high pres-
sure solid rocket motor nozzles working under extremely
high heat flow and erosion. The result can use to internal
insulation design of solid rocket motor. The proposed
method is effective for IHCP. These applications can be
useful in making quick and efficient identification of
unknown heat flux on the inner surface, such as the heat
source or heat flux of a thermal system. The method can
be applied in certain types of problem and you can derive

the state equation including unknown input, assuming
the measurement equation is known. The unknown com-
ponents at any time step can be estimated recursively from
measurements taken at the same time step. In the future, it
can be further applied to relative non-destruction tests. We
will also expand this method to inverse heat conduction
problems with irregular composite material geometries
study or nonlinear system.
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